Part Number Hot Search : 
PC200 1117A SE307 PT15D CX789 0S080H CM100 R6202240
Product Description
Full Text Search
 

To Download MRF136 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF136/D
The RF MOSFET Line
RF Power Field-Effect Transistors
N-Channel Enhancement-Mode MOSFETs
. . . designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range, in either single ended or push-pull configuration. * Guaranteed 28 Volt, 150 MHz Performance MRF136 MRF136Y Output Power = 15 Watts Output Power = 30 Watts Narrowband Gain = 16 dB (Typ) Broadband Gain = 14 dB (Typ) Efficiency = 60% (Typical) Efficiency = 54% (Typical) * Small-Signal and Large-Signal Characterization * 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR * Space Saving Package For Push-Pull Circuit Applications -- MRF136Y * Excellent Thermal Stability, Ideally Suited For Class A Operation * Facilitates Manual Gain Control, ALC and Modulation Techniques
G S MRF136Y D
MRF136 MRF136Y
15 W, 30 W, to 400 MHz N-CHANNEL MOS BROADBAND RF POWER FETs
MRF136
D
CASE 211-07, STYLE 2 MRF136
G G S (FLANGE) CASE 319B-02, STYLE 1 MRF136Y D
MAXIMUM RATINGS
Rating Drain-Source Voltage Drain-Gate Voltage (RGS = 1.0 M) Gate-Source Voltage Drain Current -- Continuous Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Operating Junction Temperature Symbol VDSS VDGR VGS ID PD Tstg TJ 2.5 55 0.314 Value MRF136 65 65 40 5.0 100 0.571 MRF136Y 65 65 Unit Vdc Vdc Vdc Adc Watts W/C C C
- 65 to +150 200
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RJC Max MRF136 3.2 MRF136Y 1.75 Unit C/W
Handling and Packaging -- MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV 6
(c)MOTOROLA RF DEVICE DATA Motorola, Inc. 1994
MRF136 MRF136Y 1
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain-Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) Zero-Gate Voltage Drain Current (VDS = 28 V, VGS = 0) Gate-Source Leakage Current (VGS = 40 V, VDS = 0) V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 2.0 1.0 Vdc mAdc Adc
ON CHARACTERISTICS (1)
Gate Threshold Voltage (VDS = 10 V, ID = 25 mA) Forward Transconductance (VDS = 10 V, ID = 250 mA) VGS(th) gfs 1.0 250 3.0 400 6.0 -- Vdc mmhos
DYNAMIC CHARACTERISTICS (1)
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss -- -- -- 24 27 5.5 -- -- -- pF pF pF
FUNCTIONAL CHARACTERISTICS (2)
Noise Figure (VDS = 28 Vdc, ID = 500 mA, f = 150 MHz) MRF136 NF Gps Gps No Degradation in Output Power No Degradation in Output Power -- 13 12 50 50 1.0 16 14 60 54 -- -- -- -- -- dB dB dB % %
Common Source Power Gain (Figure 1) MRF136 (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Common Source Power Gain (Figure 2) MRF136Y (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) Drain Efficiency (Figure 1) MRF136 (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Drain Efficiency (Figure 2) MRF136Y (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) Electrical Ruggedness (Figure 1) MRF136 (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA, VSWR 30:1 at all Phase Angles) Electrical Ruggedness (Figure 2) MRF136Y (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA, VSWR 30:1 at all Phase Angles) NOTES: 1. For MRF136Y, each side measured separately. 2. For MRF136Y measured in push-pull configuration.
MRF136 MRF136Y 2
MOTOROLA RF DEVICE DATA
R4 + - RFC1
C10
RFC2
C11
VDD = + 28 V
BIAS ADJUST R3 R2
D1
C8
C9
C7
R1 C1 RF INPUT C2 DUT L1
L2
L3
C6 RF OUTPUT
C4
C3
C5
C1, C2 -- Arco 406, 15- 115 pF or Equivalent C3 -- Arco 404, 8 - 60 pF or Equivalent C4 -- 43 pF Mini-Unelco or Equivalent C5 -- 24 pF Mini-Unelco or Equivalent C6 -- 680 pF, 100 Mils Chip C7 -- 0.01 F Ceramic C8 -- 100 F, 40 V C9 -- 0.1 F Ceramic C10, C11 -- 680 pF Feedthru D1 -- 1N5925A Motorola Zener
L1 -- 2 Turns, 0.29 ID, #18 AWG, 0.10 Long L2 -- 2 Turns, 0.23 ID, #18 AWG, 0.10 Long L3 -- 2-1/4 Turns, 0.29 ID, #18 AWG, 0.125 Long RFC1 -- 20 Turns, 0.30 ID, #20 AWG Enamel Closewound RFC2 -- Ferroxcube VK-200 -- 19/4B R1 -- 27 , 1 W Thin Film R2 -- 10 k, 1/4 W R3 -- 10 Turns, 10 k R4 -- 1.8 k, 1/2 W Board Material -- 0.062 G10, 1 oz. Cu Clad, Double Sided
Figure 1. 150 MHz Test Circuit (MRF136)
R4 BIAS ADJUST D1 R6
C11 RFC1
C2
R2
C3
R5
C5 C6
RFC2
C8
VDD = + 28 V
R1 G T1 C1 A B G DUT R3 D C9 C4 S D T2
C7
RF INPUT
RF OUTPUT
C10
C1 -- 5.0 pF C2, C3, C4, C6, C7, C9, C11 -- 0.1 F Ceramic C5, C8 -- 680 pF Feedthru C10 -- 15 pF D1 -- 1N4740 Motorola Zener RFC1 -- 17 Turns, #24 AWG Wound on R5 RFC2 -- Ferroxcube VK-200-19/4B or Equivalent R1 -- 10 k, 1/4 W R2, R3 -- 560 , 1/2 W R4 -- 10 Turns, 10 k
R5 -- 56 k, 1 W R6 -- 1.6 k, 1/4 W T1 -- Primary Winding -- 3 Turns #28 Enameled Wire. T1 -- Secondary Winding -- 2 Turns #28 Enameled Wire. T1 -- Both windings wound through a Fair/Rite Balun 65 core. T1 -- Part #2865002402. T2 -- 1:1 Transformer Wound Bifilar -- 2 Turns Twisted Pair T1 -- #24 Enameled Wire through a Indiana General Balun Q1 T1 -- core. Part #18006-1-Q1. Primary winding center tapped. Board Material -- 0.062 G10, 1 oz. Cu Clad, Double Sided
Figure 2. 30 - 150 MHz Test Circuit (MRF136Y)
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y 3
20 18 Pout , OUTPUT POWER (WATTS) 16 14 12 10 8 6 4 2 0 0 200 400 600 800 Pin, INPUT POWER (MILLWATTS) 1000 VDD = 28 V IDQ = 25 mA Pout , OUTPUT POWER (WATTS) f = 100 MHz 150 MHz 200 MHz
10 9 8 7 6 5 4 3 2 1 0 0 200 400 600 800 Pin, INPUT POWER (MILLWATTS) 1000 VDD = 13.5 V IDQ = 25 mA 200 MHz 150 MHz f = 100 MHz
Figure 3. Output Power versus Input Power
Figure 4. Output Power versus Input Power
20 18 Pout , OUTPUT POWER (WATTS) 16 14 12 10 8 6 4 2 0 0 1 2 Pin, INPUT POWER (WATTS) 3 4 VDD = 13.5 V f = 400 MHz IDQ = 25 mA Pout , OUTPUT POWER (WATTS) VDD = 28 V
24 21 18 15 400 mW 12 9 6 3 0 12 14 IDQ = 25 mA f = 100 MHz 18 22 16 20 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 200 mW Pin = 600 mW
Figure 5. Output Power versus Input Power
Figure 6. Output Power versus Supply Voltage
24 Pin = 900 mW Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 21 18 600 mW 15 12 9 6 3 0 12 14 300 mW
24 21 18 15 0.7 W 12 9 6 3 26 28 0 12 14 0.4 W IDQ = 25 mA f = 200 MHz 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Pin = 1 W
IDQ = 25 mA f = 150 MHz 18 22 16 20 24 VDD, SUPPLY VOLTAGE (VOLTS)
Figure 7. Output Power versus Supply Voltage
Figure 8. Output Power versus Supply Voltage
MRF136 MRF136Y 4
MOTOROLA RF DEVICE DATA
20 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 18 16 14 12 10 8 6 4 2 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 1W IDQ = 25 mA f = 400 MHz Pin = 3 W 2W
16 14 12 10 8 6 4 2 0 -7 -6 -5 -4 -3 -2 -1 0 1 VGS, GATE-SOURCE VOLTAGE (VOLTS) 2 3 TYPICAL DEVICE SHOWN, VGS(th) = 3 V 400 MHz 150 MHz VDD = 28 V IDQ = 25 mA Pin = CONSTANT
400 MHz
Figure 9. Output Power versus Supply Voltage MRF136
Figure 10. Output Power versus Gate Voltage MRF136
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
2 I D, DRAIN CURRENT (MILLAMPS) 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 VDS, GATE-SOURCE VOLTAGE (VOLTS) 6 7 VDS = 10 V TYPICAL DEVICE SHOWN, VGS(th) = 3 V
1.04 1.03 1.02 1.01 1 0.99 0.98 0.97 0.96 0.95 0.94 - 25 0
VDS = 28 V
ID = 750 mA 500 mA
250 mA
25 mA
25
75 125 50 100 TC, CASE TEMPERATURE (C)
150
175
Figure 11. Drain Current versus Gate Voltage (Transfer Characteristics)* MRF136/MRF136Y
100 VGS = 0 V f = 1 MHz Coss 10 5 3 2 1
Figure 12. Gate-Source Voltage versus Case Temperature* MRF136/MRF136Y
MRF136Y MRF136 TC = 25C
180 C, CAPACITANCE (pF)
60
40
Ciss Crss
I D, DRAIN CURRENT (AMPS)
20 0
0.3 0.2 0.1
0
4
8 12 16 20 24 VDS, DRAIN-SOURCE VOLTAGE (VOLTS)
28
1
2
3 5 20 30 50 70 10 VDS, DRAIN-SOURCE VOLTAGE (VOLTS)
100
Figure 13. Capacitance versus Drain-Source Voltage* MRF136/MRF136Y
*Data shown applies to MRF136 and each half of MRF136Y.
Figure 14. DC Safe Operating Area MRF136/MRF136Y
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y 5
MRF136Y TYPICAL PERFORMANCE IN BROADBAND TEST CIRCUIT (Refer to Figure 2)
40 Pout , OUTPUT POWER (WATTS) 35 30 25 20 30 MHz 15 10 5 0 0 0.5 1 1.5 Pin, INPUT POWER (WATTS) 2 2.5 VDD = 28 V IDQ = 100 mA POWER GAIN (dB) f = 150 MHz 16 14 12 10 8 6 4 2 0 0 20 40 60 100 80 f, FREQUENCY (MHz) 120 140 160 VDD = 28 V IDQ = 100 mA Pout = 30 W
Figure 15. Output Power versus Input Power
Figure 16. Power Gain versus Frequency
100 Pout , OUTPUT POWER (WATTS) 90 80 , EFFICIENCY (%) 70 60 50 40 30 20 10 0 0 20 40 60 80 100 f, FREQUENCY (MHz) 120 140 160 VDD = 28 V IDQ = 100 mA Pout = 30 W
30 25 20 15 10 5 0 -6 VDD = 28 V IDQ = 100 mA Pin = CONSTANT TYPICAL DEVICE SHOWN, VGS(th) = 3 V f = 150 MHz 30 MHz
-4
-2 0 2 VGS, GATE-SOURCE VOLTAGE (VOLTS)
4
6
Figure 17. Drain Efficiency versus Frequency
Figure 18. Output Power versus Gate Voltage
TYPICAL 400 MHz PERFORMANCE
40 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 35 30 25 20 15 10 5 0 0 0.5 1 1.5 2 2.5 Pin, INPUT POWER (WATTS) 3 3.5 VDD = 28 V IDQ = 100 mA f = 400 MHz 40 35 30 25 20 15 10 5 0 -4 -3 -1 1 -2 0 2 VGS, GATE-SOURCE VOLTAGE (VOLTS) 3 4 f = 400 MHz VDD = 28 V IDQ = 100 mA Pin = CONSTANT TYPICAL DEVICE SHOWN, VGS(th) = 3 V
Figure 19. Output Power versus Input Power
Figure 20. Output Power versus Gate Voltage
MRF136 MRF136Y 6
MOTOROLA RF DEVICE DATA
400 200 Zin{ 150 200 f = 100 MHz ZOL* 150 VDD = 28 V, IDQ = 25 mA, Pout = 15 W f MHz 100 150 200 400 Zin{ OHMS 7.5 - j9.73 4.11 - j7.56 2.66 - j6.39 2.39 - j2.18 f = 100 MHz 400
VDD = 28 V, IDQ = 25 mA, Pout = 15 W f MHz 100 150 200 400 ZOL* OHMS 13.7 - j16.8 9.08 - j15.38 4.74 - j8.92 4.28 - j4.17
{27 Shunt Resistor Gate-to-Ground
ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.
Figure 21. Large-Signal Series Equivalent Input Impedance, Zin MRF136
Figure 22. Large-Signal Series Equivalent Output Impedance, ZOL* MRF136
Zin & ZOL* are given from drain-to-drain and gate-to-gate respectively.
400 225
400 Zin 150 225 ZOL* 150 100 100 50 f = 30 MHz f MHz 30 50 100 150 225 400
VDD = 28 V, IDQ = 100 mA, Pout = 30 W Zin{ Ohms 59.3 - j24 48 - j33.5 20.5 - j34.2 4.77 - j25.4 3 - j9.5 2.34 - j3.31 ZOL* Ohms 40.1 - j8.52 37 - j11.9 29 - j16.5 20.6 - j19 13 - j16.7 10.2 - j14.3
50
f = 30 MHz
Feedback loops: 560 ohms in series with 0.1 F Drain to gate, each side of push-pull FET ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.
Figure 23. Input and Outut Impedance MRF136Y MOTOROLA RF DEVICE DATA MRF136 MRF136Y 7
MRF136
f (MHz) 2.0 5.0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800 S11 |S11| 0.988 0.970 0.923 0.837 0.784 0.751 0.733 0.720 0.709 0.707 0.706 0.708 0.711 0.714 0.717 0.720 0.723 0.727 0.732 0.735 0.738 0.740 0.746 0.742 0.744 0.751 0.757 0.760 0.762 0.774 0.775 0.781 0.787 0.792 0.797 0.801 0.810 0.816 0.818 0.825 0.834 0.837 0.836 0.841 0.844 0.846 - 11 - 27 - 52 - 88 - 111 - 125 - 135 - 1 42 - 147 - 152 - 155 - 157 - 159 - 161 - 163 - 164 - 165 - 166 - 167 - 168 - 169 - 170 - 171 - 172 - 173 - 174 - 175 - 176 - 177 - 179 - 179 + 179 + 177 + 176 + 175 + 175 + 174 + 173 + 171 + 170 + 169 + 168 + 167 + 166 + 165 + 163 |S21| 41.19 40.07 35.94 27.23 20.75 16.49 13.41 11.43 9.871 8.663 7.784 7.008 6.435 5.899 5.439 5.068 4.709 4.455 4.200 3.967 3.756 3.545 3.140 2.783 2.540 2.323 2.140 1.963 1.838 1.696 1.590 1.493 1.415 1.332 1.259 1.185 1.145 1.091 1.041 0.994 0.962 0.922 0.879 0.838 0.824 0.785 S21 173 164 149 129 117 108 103 99 96 93 91 88 86 85 82 80 80 78 77 75 74 73 69 67 64 60 58 54 52 50 48 46 43 40 38 37 36 34 32 30 29 27 25 25 24 21 |S12| 0.006 0.014 0.026 0.040 0.046 0.048 0.050 0.050 0.050 0.051 0.051 0.051 0.051 0.051 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.053 0.053 0.054 0.055 0.058 0.059 0.062 0.065 0.068 0.071 0.074 0.079 0.083 0.088 0.094 0.101 0.106 0.112 0.119 0.127 0.133 0.140 0.148 0.154 S12 67 62 54 36 27 22 19 16 14 13 13 13 14 15 16 17 18 18 18 19 19 20 22 25 27 29 32 35 38 41 43 46 47 48 50 51 52 52 53 53 53 53 52 53 52 50 |S22| 0.729 0.720 0.714 0.690 0.684 0.680 0.679 0.678 0.679 0.683 0.682 0.680 0.681 0.682 0.684 0.684 0.686 0.690 0.694 0.699 0.703 0.706 0.717 0.724 0.724 0.736 0.749 0.758 0.768 0.783 0.793 0.805 0.813 0.825 0.831 0.843 0.855 0.869 0.871 0.884 0.890 0.906 0.909 0.917 0.933 0.941 S22 - 12 - 31 - 58 - 96 - 118 - 131 - 139 - 145 - 149 - 153 - 155 - 157 - 158 - 159 - 160 - 161 - 161 - 161 - 162 - 162 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 164 - 164 - 164 - 164 - 164 - 165 - 165 - 165 - 165 - 166 - 167 - 167 - 167 - 168
Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 0.5 A
MRF136 MRF136Y 8
MOTOROLA RF DEVICE DATA
+j50 +120 +j25 +j100 +j150 +j10 f = 800 MHz 0
10 25 50 100 150 250 500
+90 +60 f = 800 MHz +150 S12 600 400 180 - j500
0.18 0.14 0.10 0.06 0.02
+30
+j250 +j500
70
400 150
0.16
0.12
0.08
0.04
0
- j10
70
S11
- j250 -150 - j150 - j100 -120
- 30
- j25 - j50
- 60 -90
Figure 24. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A
Figure 25. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A
+90 +120 70 100 +150 S21 150 400 f = 800 MHz +30 +j10 +60 +j25
+j50 +j100 +j150 +j250 +j500 0 f = 800 MHz 150 400 70 - j10 S22 - j25 - j50 0
10 25 50 100 150 250 500
180
8
6
4
2
- j500 - j250 - j150 - j100
-150
- 30
-120 - 90
- 60
Figure 26. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A
Figure 27. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y 9
DESIGN CONSIDERATIONS The MRF136 and MRF136Y are RF power N-Channel enhancement mode field-effect transistors (FETs) designed especially for HF and VHF power amplifier applications. Motorola RF MOS FETs feature planar design for optimum manufacturability. Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF136 and MRF136Y are enhancement mode FETs and, therefore, do not conduct when drain voltage is applied without gate bias. A positive gate voltage causes drain current to flow (see Figure 11). RF power FETs require forward bias for optimum gain and power output. A Class AB condition with quiescent drain current (IDQ) in the 25 -100 mA range is sufficient for many applications. For special requirements such as linear amplification, IDQ may have to be adjusted to optimize the critical parameters. The MOS gate is a dc open circuit. Since the gate bias circuit does not have to deliver any current to the FET, a simple resistive divider arrangement may sometimes suffice for this function. Special applications may require more elaborate gate bias systems. GAIN CONTROL Power output of the MRF136 and MRF136Y may be controlled from rated values down to the milliwatt region (>20 dB reduction in power output with constant input power) by varying the dc gate voltage. This feature, not available in
bipolar RF power devices, facilitates the incorporation of manual gain control, AGC/ALC and modulation schemes into system designs. A full range of power output control may require dc gate voltage excursions into the negative region. AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar transistors are suitable for MRF136 and MRF136Y. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Both small signal scattering parameters (MRF136 only) and large signal impedance parameters are provided. Large signal impedances should be used for network designs wherever possible. While the s parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies outside those presented in the large signal impedance plots. RF power FETs are triode devices and are therefore not unilateral. This, coupled with the very high gain, yields a device capable of self oscillation. Stability may be achieved using techniques such as drain loading, input shunt resistive loading, or feedback. S parameter stability analysis can provide useful information in the selection of loading and/or feedback to insure stable operation. The MRF136 was characterized with a 27 ohm input shunt loading resistor, while the MRF136Y was characterized with a resistive feedback loop around each of its two active devices. For further discussion of RF amplifier stability and the use of two port parameters in RF amplifier design, see Motorola Application Note AN215A on page 6-204 in the RF Device Data (DL110 Rev 1). LOW NOISE OPERATION Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended.
MRF136 MRF136Y 10
MOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
A U M Q
1 4
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
M
DIM A B C D E H J K M Q R S U STYLE 2: PIN 1. 2. 3. 4. SEATING PLANE SOURCE GATE SOURCE DRAIN
R
2 3
B
S
D K
INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730
MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54
J H C E
CASE 211-07 ISSUE N MRF136
IDENTIFICATION NOTCH
-A- L
4 3
Q 2 PL 0.15 (0.006) -N-
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
TA
M
N
M DIM A B C D E F H J K L N Q
K D
1
2
F 4 PL 0.38 (0.015)
M
TA
M
N
M
INCHES MIN MAX 0.965 0.985 0.355 0.375 0.230 0.260 0.055 0.065 0.102 0.114 0.055 0.065 0.160 0.170 0.004 0.006 0.120 0.140 0.725 BSC 0.225 0.241 0.125 0.135
MILLIMETERS MIN MAX 24.51 25.02 9.02 9.52 5.84 6.60 1.40 1.65 2.59 2.90 1.40 1.65 4.06 4.31 0.10 0.15 3.05 3.55 18.42 BSC 5.72 6.12 3.18 3.42
B J H
0.38 (0.015) C E
M
TA
M
N
M
-T-
SEATING PLANE
STYLE 1: PIN 1. 2. 3. 4.
GATE (INPUT) GATE (INPUT) DRAIN (OUTPUT) DRAIN (OUTPUT) SOURCE IS FLANGE
CASE 319B-02 ISSUE C MRF136Y
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y 11
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
MRF136 MRF136Y 12
*MRF136/D*
MRF136/D MOTOROLA RF DEVICE DATA


▲Up To Search▲   

 
Price & Availability of MRF136

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X